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Consideration is given to the issues of optimization of  the processes of  treatment of  materials with 
certain unknown initial characteristics. Supplementing of  the definition of  these unknown parameters 
can be considered as adaptation of  a mathematical model. 

From a mathematical standpoint, a search for a rational process of  treatment of materials is a problem 
of stochastic optimization (PSO). 

Depending on the specific conditions and on the objectives of investigation, the problem is most fre- 
quently reduced to one of the following variants: (a) a search for a rational solution on the average (the M 
model); (b) minimization of the spread in the solution (the D model); (c) minimization of the probability of a 
deviation of the solution from a certain prescribed value (the P model); (d) finding the optimum solution for 
the worst distribution of initial data (the MM model). The letters used in the models'  names denote: M, mathe- 
matical expectation, D, dispersion, P, probability, MM, minimum of the maximum or maximum of the mini- 
mum. A procedure of solving the problem for various types of models is described in [1] in detail. 

Under the conditions of actual production, interest is frequently provoked by a certain combination of 
the models rather than by specific models [1]. The problem is reduced to a multicriterial problem of stochastic 
optimization, for which we must construct a complex figure of merit. An approach to the construction of this 

criterion is proposed that leans upon the prerequisite that fuzzy sets rather than numbers are the elements of 
investigation [2]. We will call it a complex optimization criterion (COC). 

By a fuzzy set A is meant a combination of pairs of the form (u, gA(U)), where u ~ U, U is the set of  
elements in the ordinary sense (U c R), and gA(U) is the membership function of the fuzzy set A that is defined 

as ~IA:U----~ [0, 1]. 

The expression ~la(U) = 1 means full membership of the element u in the set U, while ].ta(u) = 0 indi- 
cates that the element u does not belong to the set U. For an arbitrary element u, the membership function 
governs the degree of its belonging to the set U. If the corresponding models (M, D, P, and MM) are selected 
as the elements of a fuzzy set, then, by the above definition, the fuzzy set A consists of four pairs and can be 
written in the form 

4 

A = k.) ~1 a (ai)/a i . (1) 
i=1 

We note that if the fuzzy set A is represented as a random quantity defined on the set R we can select 
the distribution density or the distribution function A as the membership function. 

Now the PSO can be formulated as follows. 
We must determine the control vector that would ensure the minimum value of the objective function 

on the fuzzy set A for all the equality and inequality constraints. Equality constraints describe a boundary-value 
problem of treatment of materials, while inequality constraints extend to all the state and control variables. 
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To solve the PSO in the formulation presented, we must determine a procedure for comparing fuzzy 
numbers on the fuzzy set. The so-called ranking indices that permit comparison of fuzzy numbers are intro- 
duced in [3]. 

For further consideration, we must introduce the concept of  the carrier of  a fuzzy set (the carrier of a 

fuzzy number is similarly defined). 
The carrier of the fuzzy set A refers to the set S(A) that is defined as follows: 

S ( A ) = { o I [ a ~  U , g  A (a) >0} . (2) 

In the general case, the order relation (of a "larger," "smaller," or "equal" type) for fuzzy numbers is 
fuzzy itself. Only where the intersection of the carriers of  the fuzzy numbers A1 and A2 is empty will the order 
relation be precise. Therefore, we must define a certain precise function of fuzzy arguments that, regardless of  
the relation of the carriers of fuzzy numbers, would unambigously determine the order relation between them. 
In the work, we propose several procedures for calculating this precise function H(A, B) of the fuzzy argu- 
ments A and B that is referred to as the ranking index. The value of the latter for a specific pair of  fuzzy 
arguments leads us to solving the question as to which of the two numbers is smaller. For example: 

(A, B) = sup min {~A (a), ~B (b)}, (3) HI 
a>_b 

in this case, if HI(A, B) >_Hi(B, A), then A _>B. 

The index HI separates out the fuzzy number A i a s  the largest one in which sup arg sup laA (a) is the 
a E S(Ai) 

largest (i.e., the number in which the maximum of the membership function is located more to the right along 

the U axis). 
The ranking indices of the type (3) are used for fuzzy sets characterized by fuzzy numbers with ele- 

ments of the same scale. Therefore, employing them to construct a fuzzy set that characterizes a complex fig- 

ure of merit (this fuzzy set will be denoted by the superscript r) required redefinition of the corresponding 
elements. 

In particular, if the mathematical expectation of the solution is selected as al,  we must select the root- 
mean-square deviation as a2, the mathematical expection of the solution in the case where the probability of  
deviation of the solution from a certain prescribed region would be minimum as a3, and the worst value of the 
solution for the most unfavorable distribution of the initial parameters as a4. 

To avoid this redefinition, we construct a fuzzy set whose elements will be relative and dimensionless 
magnitudes of the criteria rather than their absolute values. By virtue of the constant significance of each cor- 
responding component of two fuzzy numbers A r and B r (with all possible controls), the ranking index can be 

constructed as follows: 

H (A r, B r) = sign C i , (4) 

where Ci = ~i(a~- bri)/di, i conveys max I[..ti(a ~ - ~ ) / d i [ ,  ~i is the membership function (significance) of af (or 
i 

br), di = max (a~, br), i E [1, n], and n is the number of  pairs that determine the fuzzy set. If  the value of i is 

unique and if sign Ci = "+", then At> Br; if sign Ci = "-",  then At< B r. 

I f  the value of i is not unique, we determine k, i.e., the number of extrema equal in modulus (k < n), 
and calculate 

k 

= y~ sign C i . (5) 

i=1 
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If )~ = 0, then A r = Br; if ~. < 0, then Ar< Br; if ~, > 0, then Ar> B r. 

We note that Bi is essentially expert evaluations. By virtue of  their fuzziness we can solve the multi- 
criterial problem of stochastic optimization with the use of the complex figure of merit and the ranking index 
of the type (3) and (4) at Bi = 1, i = 1, n. Furthermore, the above procedure for solving the problem can be 
used to advantage for a problem of multicriterial optimization and in a determinated case. 

Ranking indices of the type (3), (4), and (5) are determinate in a sense, since each separates out for 
comparison a certain value of the fuzzy number with the corresponding membership function, and their use is 
justified when this value can be separated out by any sign. 

There are ranking indices of  integral character. It is convenient to use them for fuzzy numbers with 
approximately the same carriers and with membership functions that are rather difficult for mutual comparison. 
In this work, we used a ranking index of the form 

H 5 (A, B) = H+ (A) - H+ (B), 

where As is the o~-level set of the fuzzy number A, i.e., 

1 

H+ (A) = f M  (Ac~) dc~, 

0 

(6) 

Ace = {a: ~[ A (a) >_ ~1 ; M (Aa) = (a ° + a+) /2 ,  

where a ° = in fa  and a + = s u p a .  If  Hs(A, B) >0, then A_>B. 
a e  Ac~ a e  A n 

The integral ranking indices take into account the entire range of definition of fuzzy numbers. 
In many cases, to solve the PSO, we must supplement the definition of unknown characteristics of the 

parameters that are described by random quantities. The process of supplementing the definition can be consid- 
ered as adaptation of the mathematical model. 

The modeling and optimization scheme for strain processes under the conditions of indefiniteness of 
parameters and uncertainty of some of their characteristics can be written in terms of optimum adaptive sys- 
tems. In the class of problems under investigation, the elements of the assumed scheme of the adaptive system 
are: 

(a) the object of control - a mathematical model of  a certain technological process that must be opti- 
mized in accordance with a prescribed figure of merit; 

(b) the control device - the control and state variables of the PSO; 
(c) the adapter - the algorithm of supplementing the definition (assessment) of  lacking intbrmation on 

the control and state variables; 
(d) the control device in a feedback path - the algorithm of the optimization method employed. 
In accordance with the adopted terms, by a basic loop we will mean one method of solving the PSO 

and by an adaptation loop - the procedure for supplementing the definition of unknown characteristics of the 
parameters of the process. 

Within the framework of the description of undefined parameters by random quantities that is adopted 
in the work, a general problem of supplementing the definition (PSD) of unknown parameter distributions can 
be formulated as follows. 

Let a functional dependence of the random quantity Y on the system of random quantities_X = (Xl, 
X2 . . . . .  X.) be known: Y = ( P ( X l ,  X 2 . . . . .  Xn) .  Let I and I be two nonintersecting sets of indices; 1 u I = { 1, 2, 
.... n}. Let the distributions of the random quantities Y and Xi (i ~ I) also be known. It is necessary to find 
the distribution density of the random quantities Xk (k e 7). 

In this work, consideration is given to the processes for which PSD can be reduced to a partial case 
(PCPSD). We formulate the PCPSD. 

Let a functional dependence of the random quantity Y on the system of random quantities X = (X1, 
X2 .. . . .  X.) be known: Y = ¢P(XI, X2 . . . . .  X.).  The distributions of the random quantities Y and Xk, k = { 1, 2 . . . . .  
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Fig. 1. Representation diagram of the probability densities; the dashed 
curve is the unknown distribution; the figures on the abscissa axis are the 
numbers of  intervals. 

i -  1, i + 1 . . . . .  n}, are also known. Considering the random quantities X k to be independent, we must find the 

distribution density of the random quantity Xi. 
Below, we propose two methods for evaluating numerically an unknown distribution of the random 

quantity Xi: a computational method and a method of hypotheses. 
The main idea of a computational method consists of  obtaining the distribution of Xi using some rela- 

tions of probability theory and data on the distribution of Y and of the remaining components of X. It is appli- 
cable in the absence of information on the distribution of Xi. 

The main idea of the method of hypotheses lies in the fact that the hypothesis of the form of the 
unknown distribution of Xi is adopted a priori, and then the optimization problem that minimizes a deviation 
of the obtained distribution of Y from a prescribed one is solved. In this case, the components of  the control 
vector are the characteristics of the distribution of Xi. This method is employed in the case where the form of 
the Xi distribution is known but its parameters are unknown. 

We consider these methods in greater detail, using the problem of upsetting of a cylindrical specimen 
as an example. The formulation, procedure, and some results of the solution of this problem are presented in 
[4]. 

Let the plastic strain resistance (~s and the Sybel friction coefficient fz be stochastic in this problem. Then 
the deviation of  the lateral surface of the produced workpiece from a prescribed A is a function of (~ and fz: 

A = q~ ((~s, fz) ,  

where ~ and fz have a stochastic spread. Before solving the PSO we must determine the families of distribu- 

tions for o~ and .fz and evaluate their specific parameters. The distribution of c~ can be obtained based on 
laboratory statistical investigations. It is much more difficult to evaluate the distribution of fz by virtue of the 
sophistication of the experiments. Therefore, the problem of searching for methods of numerical evaluation of 

the .f~ distribution is urgent. 
For the example under consideration, the computational method is as follows. It is assumed that the 

distribution densities .fA and .fo for, respectively, A and ~s are known, and the interval of  spread in fz is also 
known. The distribution density fv for the friction coefficient fz is unknown; it must be tbund (from here on, 
we will use the subscript ~ for the quantities that refer to Os and the subscript v for the quantities related to fz). 
For this purpose, the corresponding regions of definition of the functions that describe the distribution densities 
are divided into intervals (Fig. 1), where n and g are arbitrary integers and m = n -  1. 

Each interval corresponds to the average values 

Ai + Ai+I o O's,k "{- (YS,k+l V .fz¢ +fzd+l 
Ci-- 2 ' C k - -  2 , C j - -  2 

and probabilities 

Ai+ I (:Ys.k+ I fz j+  I ° I  v f  
Pi = fA d A ,  Pk = fodOs,  Pj = f~dfz" 

A i c,~ fza 
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Considering ~3s and fz to be independent random quantities and employing the elementary relations of 
probability theory, we can obtain the system of linear equations 

A 
Pl =a~lXl + a12x2 + ..- +al,r~;n, 

,5 
P2 = a21xl + a22x2 + --. + a 2 , ~ n ,  

A 
Pn-I = a(n- l ) l  Xl + a(n-1)2 X2 + "" + a(n-1)n :% , 

(7) 

1 =2t" 1 + X  2 + . . .  +)¢n , 

where a) is the sought probabilities py; aij = Zpg ;  the elements of the sum are only p~ that correspond to such 
k 

c~ that satisfy the condition qXc~, c~) c [Ai, Ai+I]. 

However, this method turned out to be of little use, since the last, normalizing equation imposes no 
constraints on the positiveness of ~t)-. As a result, the solution of system (7) can involve negative numbers. To 
avoid this, we propose another variant of the computational method - solution of the canonical problem of 
linear programming 

m i n ( c , x ) ,  A x = b ,  a l />0 ,  j = 1 , 1 1 ,  

where x ~ R", A is an m × n matrix, b ~ R m, and c ~ R ' .  In the example under consideration, A is the matrix 
with elements a,.j, c is the unit vector, b is the vector with the coordinates pp, i = 1, m, and x is the vector 
whose coordinates are the sought probabilities p)', j = 1, n. To solve this problem, use is made of a modified 
simplex method. 

The method of  hypotheses is based on the a priori hypothesis of a family of sought distributions. In the 
example under consideration, the form of the fz distribution is hypothesized based on primary data of physical 
character. Next, the optimization problem is solved, in which the control variables are the parameters of the 
fz distribution and the objective function is the deviation ~5 of the obtained distribution from a prescribed dis- 

tribution of the quantity A: 8 = lira-.f~ll. As the objective function for "measuring" the deviation we can use 
the chi-square (X 2) criterion, the Chebyshev norm, etc. When the obtained and prescribed distributions of  A are 
rather close, the hypothesis of the form of the fz distribution is adopted and the parameters obtained by solution 
of the optimization problem are used as the distribution ones. 

It should be noted that the term "closeness of distributions" from the viewpoint of a norm in the gen- 
eral case does not yet mean the correspondence of the form of the obtained distribution to the prescribed form 
of the distribution of A. Therefore, it seems necessary to check the form of the obtained distribution of A. For 
this purpose, we can employ any permissible criterion, for example, ;C'. 

The development of this method is a simultaneous check of several hypotheses of the family of f~ dis- 
tributions followed by the selection of the best of them in terms of the minimum ~i. 

We give the results of employing the computational method to solve the PCPSD in the case of  drawing 
a tube [5] by the dependence A = q)(Rt, ~s) where A is the deviation of the obtained thickness of the tube from 
a prescribed one; Rt is the initial (external) radius of the billet. 

We are given: 

(1) RI NN (18.870 mm; 0.005 mm) and A - N  (0.222 mm; 0.02 mm). 
(2) c~ ~ [62; 68] MPa. 
We must find the distribution of the plastic strain resistance c~s. 
Let m = 5 and n = 14. 
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Fig. 3. Histogram of the distribution of (~s, MPa. 

The solution results for different g = {20, 30, 50, 100, 150} (g is the number of intervals into which 
we divide the region of definition of the function that describes the distribution density of the parameter Rl) 
are presented in Fig. 2. From the average values of p~ and the corresponding average values of the segments 
c~ of the interval of spread in ~s, a histogram of the sought distribution is constructed (Fig. 3). 

Analysis of the given plots shows the following: 
(1) in employing the simplex method, some p~ are inevitably zero; therefore, the obtained distribution 

can have a complex form; 
° 

(2) the solution found in the form of a combination of pairs (c~; p~), j = 1, ,1, can directly be used in 
problems where the distribution densities of the parameters are approximated by histograms. 

We give the results of employing the method of hypotheses to solve the PCPSD in the case of preci- 
sion stamping [6]. 

We take 

, w 12x2- s*l 
a=llfn-f, ll, n = k - 7  + ks ' 

where kw and ks are the normalizing coefficients, s* is the prescribed size, W is the work done by the tool on 

the movement AL, and W = ~ Q (z)dz. 
AL 

Let r I be a function of the initial height of a cylindrical billet L0 and the Coulomb friction factor f: 

n : cp (L0,¢), 

where L0 and f have a stochastic spread; the distribution of f is unknown and it must be evaluated. 
We are given: 
(1) L o - N  (19.05 mm; 0.01 ram) and r l - N  (0.967; 0.019 ); 

620 



TABLE 1. Results of Solving the PCPSD by the Method of Hypotheses with the Use of the Criterion Z 2 and the 
Chebyshev Norm 

Assumed 
distribution 

off 

Number of 
steps mf ~f mrl 033 ;(2 

Normal 

Uniform 

Normal 

Uniform 

Normal 

Uniform 

Normal 

Uniform 

Normal 

Uniform 

Normal 

Uniform 

Normal 

Uniform 

Normal 

Normal 

5 

5 

7 

7 

10 

10 

5 

5 

7 

7 

10 

10 

15 

15 

20 

20 

85 0.267 

85 0.267 

89 0.267 

84 0.267 

92 0.267 

87 0.267 

15 0.224 

30 0.100 

15 0.230 

13 0.190 

15 0.230 

14 0.240 

15 0.230 

15 0.240 

15 0.230 

15 0.240 

Criterion ;(2 
0.020 

0.020 

0.020 

0.020 

0.020 

0.020 

Chebvshevnolwl 
0.011 

0.005 

0.011 

0.011 

0.011 

0.011 

0.011 

0.011 

0.011 

0.011 

0.968 

0.968 

0.%7 

0.967 

0.967 

0.967 

0.944 

0.874 

0.946 

0.924 

0.945 

0.951 

0.944 

0.951 

0.944 

0.951 

0.011 

0.014 

0.011 

0.013 

0.011 

0.012 

0.006 

0.003 

0.006 

0.007 

0.006 

0.006 

0.006 

0.007 

0.007 

0.007 

2.169 

3.144 

1.652 

8.165 

2.339 

20.856 

1.890 

5.106 

1.364 

9.500 

4.723 

24.758 

27.656 

48.234 

73.193 

89.058 

12.634 

3.325 

18.738 

6.74 

31.891 

13.999 

20.988 

20.954 

20.989 

20.980 

20.989 

20.988 

20.989 

20.989 

20.989 

20.989 

(2) the mathematical expectation mf ~ [0.1" 0.3] and the root-mean-square deviation .of ~ [0.005; 
0.020]; 

(3) hypotheses of normal and uniform distributions of the friction factor f. 
Let us find the best one of the hypotheses in terms of the minimum & 

Solutions obtained with the employment of the criterion ~2 and the Chebyshev norm are presented in 

Table 1, where q is the number of segments into which the regions of definition of the distributions of L0, f, 

and r I were divided. 
From the data presented in the table we can draw the following conclusions. 
(1) When the criterion Z 2 is employed, the deviation 8, regardless of q, is smaller for the case where 

the hypothesis of a uniform distribution of f was considered. When the Chebyshev norm is employed, 8 is 

practically the same for normal and uniform distributions of L0. Therefore, the employment of the Chebyshev 

norm in the example under consideration provides no answer to the question of which of the hypotheses is 
more preferable. The hypothesis of a uniform distribution of as can be adopted based on the data from Table 

1 obtained with the employment of the criterion )~2. 
(2) In all the cases, the value of the criterion Z 2 confirms the hypothesis that the obtained distribution 

of 1"1 can be considered to be normal with the corresponding parameters indicated in the table. 
Of special interest is the solution of the PCPSD, in which the distributions of several initial parameters 

are unknown. We consider this case using the problem of upsetting as an example; the distributions of the 

plastic strain resistance ~3s and the Sybel friction factor fz are considered to be unknown. We will use the 
method of hypotheses, considering that both normal and uniform distributions are possible. The results of solv- 

ing the problem are presented in Table 2. 
We revert to the solution of the PSO for the process of upsetting. 
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TABLE 2. Solution o f  the PCPSD with 

Assumed 
distributions 
offz and as 

fz ~ N and ~s ~ N 

fz ~ R and Os ~ N 

fz ~ N and Os ~ R 

fz ~ R and Os ~ R 

Number mf z 
ofsteps 

714 0.298 

459 0.313 

790 0.250 

761 0.252 

Jnknown Distributions o f  Several Initial Parameters 

~fz 

0.030 

0.030 

0.022 

0.020 

m(Y S, 

MPa 

47.266 

46.309 

50.761 

50.549 

O(as), 
MPa 

1.500 

1.500 

1.492 

1.500 

mA, 
m m  

4.912 

4.911 

4.930 

4.916 

aA, 
ITIITI 

0.091 

0.095 

0.088 

0.098 

,) 

2.894 

0.975 

2.119 

0.535 

1.703 

1.100 

1.366 

0.524 

The solution of  the PCPSD yielded that fz is distributed by the normal law. Next, for calculations, use 

was made of  the following initial data: Os - N  (m~s, 15 MPa), mas ~ [400, 560] MPa; fz - N  (mfz, 0.03), and 
mfz ~ [0.09; 0.4]. Here m~s and mfz are the mathematical expectations of, respectively, the plastic strain resis- 

tance Gs and the friction factor fz- To solve the optimization problem, we employed the Nelder -Mid  method. 

The characteristics (objective functions) for the problem of upsetting were: al, mathematical expecta- 
tion of  A; q2, root-mean-square deviation of  A; a 3, probability of  the fact that A will not exceed a certain 

prescribed value (4.6 mm); a 4, maximum value of  A along the entire length of  the generatrix of  the lateral 
surface. 

Solving the problem of  selection o f  the optimum upsetting regime with different approaches to the con- 

struction of  the objective function permitted the following results. 
1. The objective function is an individual model: 

A model (determinate analog with ~,~ = mcrs and fz = mfz): mcr~ = 400.0 MPa; n!fz = 0.159; 
M model: m o  s = 400.0 MPa; mfz = 0.183; 

D model: mcs = 486.6 MPa; mfz = 0.243; 

P model: m~s = 400.0 MPa; n!fz = 0.212; 
MM model: mo,~ = 412.8 MPa; mfz = 0.249. 

2. The objective function is a linear combination o f  objective functions for individual models with sig- 

nificance coefficients ~tl = 0.8, ~t2 = 0.5, ~t 3 = 0.3, and ~t4 = 0.7 for al,  a2, a3, and a4, respectively. We ob- 
tained the tbllowing regime: mcr, = 411.7 MPa; mfz = 0.213. 

3. The objective function is the fuzzy set A with degrees of  membership [.l I = 0 . 8 ,  ~2  ---- 0 . 5 ,  [.l 3 ---- 0 . 3 ,  

and [a4 = 0.7 for al,  a2, a3, and a4, respectively. For comparison, the index Hi(A, B) was used. We obtained 
the following regime: m(~ = 400.0 MPa; mfz = 0.183. 

4. The objective function is the fuzzy set A r with degrees of  membership ]-tl = 0.8, ~t 2 = 0.5, ~3 = 0.3, 
and [.I 4 = 0.7 for a], a r, a q, and a~, where a] coincides with al; a~ coincides with a4; a r is the variance of  the 

deviation; a~ is the probability of  the deviation exceeding a value of  4.6 mm. For comparison, the index H(A r, 
B r) is used. We obtained the following regime: m(~s = 410.3 MPa; mfz = 0.227. 

5. The objective function is similar to the objective function defined in item 3. For comparison, the 

index Hs(A, B) is used. For the membership functions ~l = 0.8, H2 = 0.5, ~t3 = 0.3, and ~t4 = 0.7, we obtained 

the following regime m~s = 404.6 MPa; mfz = 0.186. 
6. The objective function is the random quantity A, whose distribution histogram is determined by the 

histograms of  stochastic initial parameters (~s and fz). For comparison, the index Hi(A, B) was used. We ob- 

tained the following regime: m(~s = 400.0 MPa; mfz = 0.159. 
7. The objective function is similar to the objective function defined in item 6. For comparison, the 

index Hs(A, B) is used. We obtained the following regime: m~s = 400.0 MPa; mfz = 0.159. 

Comparing the solutions given in items 6 and 7, we can draw the conclusion of  practical coincidence 
of  the results. This is due to the fact that in the case under investigation for a normal distribution o f  c~ and 

fz the distribution density function is a function with a pronounced maximum and a rather large excess. The 

result obtained here with the employment of  the index Hs(A, B) is natural. 
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8. The objective function is the criterion ~2 that verifies the hypothesis of a normal distribution of the 
solution. In this case, we do not merely compare the random quantities A i and Ai+~ obtained in optimization but 
first determine the values of the criterion 22 for A i and Ai+ 1 and only after that compare X~ and ~2+1. We ob- 
tained the following regime: mos = 439.1 MPa, mfz = 0.284, and ~2 = 0.154. 

The obtained value of Z2 suggests that the found control ensures the acceptability of the proposed hy- 
pothesis of a normal solution distribution with the level of  significance ot = 0.9. 

The above results enable us to state: 
(a) The solution of the PSO depends significantly on the form of the objective function. 
(b) All other things being equal, the selection of the ranking index determines, in many respects, the 

selection obtained for the PSO. 
(c) All other things being equal and when the same ranking indices are employed, the solution depends 

on the structure of the fuzzy set selected as the objective function. 
(d) The use of one optimality criterion or another in solving the PSO depends on the actual conditions 

and objectives of the investigation. 
Thus, for example, from a technologist's viewpoint, the M model can be employed in the case where 

the objective size has a significant tolerance and it will suffice to ensure the maximum possible approximation 
of this size to the middle of the tolerance zone; the D model is suitable when the tolerance zone of the objec- 

tive size is small. 
In mass and large-scale productions, the possibility exists of obtaining large statistical samples. Under 

these conditions, it can turn out to be expedient to use the P model since, by definition, it minimizes the prob- 
ability of a deviation of the solution from a certain prescribed value that can be evaluated with a high degree 
of accuracy given abundant experimental data. And, conversely, in individual and small-scale production, it is 
expedient to employ the MM model to obtain the best one of the worst solutions because of the absence of a 

sufficient body of experimental data. 
(f) In comparing fuzzy numbers, we can use both "determinate" and integral ranking indices. It should 

be borne in mind that integral indices enable us to allow for the entire range of variation in the fuzzy number, 
while "determinate" ones separate out the elements with the extremum, in a sense, value of the membership 

function. 

C O N C L U S I O N S  

1. Mathematical models for constructing generalized criteria of optimization (objective function) for the 
problem of stochastic optimization with one or several criteria are developed. The theory of fuzzy sets and 
probability theory were used for the investigation. 

2. Two procedures for determining the distribution density of one initial parameter of the problem with 
the known distributions of the remaining initial parameters and of the solution are proposed. The problem 
under investigation is a partial case of the problem of adaptive control. 

3. The results of solving the PCPSD for the processes of upsetting of a cylindrical specimen, drawing 
of a tube, and precision stamping are given. 

4. Rational regimes for upsetting a cylindrical specimen with different objectives of investigation are 

recommended. 

N O T A T I O N  

A and B, random quantities, fuzzy sets, and matrices; S(A), carrier of the fuzzy set A; H(A, B), ranking 
index; ~tA, membership function of the fuzzy set A; ai and ~ti, element and the corresponding value of the mem- 
bership function of the fuzzy set A that is a complex figure of merit; ~ ,  plastic strain resistance; fz, Sybel 
friction factor; f, Coulomb friction factor; p, probability; h, segment length along the abscissa axis; ~2, chi- 
square criterion; A, deviation of the lateral surface of the produced workpiece from the prescribed one; ~, de- 
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viation of the obtained distribution from the prescribed distribution of the random quantity; 11, figure of merit 
for the problem of precision stamping; f6, f~, fv, and fn, distribution densities of, respectively, A, Ors, fz, and rl; 
mC~s and mfz, mathematical expectations of, respectively, ~3~ and fz; N(m; ~), normal distribution with the 
mathematical expectation m and the root-mean-square deviation ~3; f z - N ,  quantity fz is distributed by the nor- 
mal law; fz ~R, quantity fz is distributed by the uniform law. Subscripts and superscripts: r, randomness; s, 
sliding. 
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